Gravity Answers

1. A
2. D
3. C
4. (a) 360 N (1)
(b) (i) $\quad\left(E_{\mathrm{p}}=m g h\right.$ gives $) E_{\mathrm{p}}=720 \times 0.6=4.3 \times 10^{2} \mathrm{~J}(1)$
(ii) $T \cos 20^{\circ}(1)=360(\mathrm{~N})$
$T=380 \mathrm{~N}$ (1)
(allow e.c.f from(a))
(c) (potential energy) changes (1)
centre of mass/gravity moves upwards (1)
5. (a) (i) $E\left(=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}\right)=\frac{29 \times 1.6 \times 10^{-19}}{4 \pi \times 8.85 \times 10^{-12} \times\left(1.15 \times 10^{-10}\right)^{2}}$
(ii) $\quad V\left(=-\frac{G M}{r}\right)=(-) \frac{6.67 \times 10^{-11} \times 63 \times 1.66 \times 10^{-27}}{1.15 \times 10^{-10}}$ (1)

$$
\begin{equation*}
=(-) 6.07 \times 10^{-26}(\mathbf{1})-\text { sign and } \mathrm{J} \mathrm{~kg}^{-1} \tag{5}
\end{equation*}
$$

(b) arrow pointing to the right (1)
6. (a) period $=24$ hours or equals period of Earth's rotation (1)
remains in fixed position relative to surface of Earth (1)
equatorial orbit same angular speed as Earth or equatorial surface (1) max 2
(b) (i) $\frac{G M m}{r^{2}}=m \omega^{2} r$ (1)

$$
\begin{align*}
& \mathrm{T}=\frac{2 \pi}{\omega} \tag{1}\\
& r\left(=\frac{G M T^{2}}{4 \pi^{2}}\right)^{1 / 3}=\left(\frac{6.67 \times 10^{-11} \times 6 \times 10^{24} \times(24 \times 3600)^{2}}{4 \pi^{2}}\right)^{1 / 3} \tag{1}
\end{align*}
$$

(gives $r=42.3 \times 10^{3} \mathrm{~km}$)
(ii) $\quad \Delta V=G M \frac{1}{R}-\frac{1}{r}$

$$
\begin{align*}
& =6.67 \times 10^{-11} \times 6 \times 10^{24} \times\left(\frac{1}{6.4 \times 10^{6}}-\frac{1}{4.23 \times 10^{7}}\right) \tag{1}\\
& \left.=5.31 \times 10^{7}\left(\mathrm{~J} \mathrm{~kg}^{-1}\right) \quad \mathbf{1}\right) \tag{1}\\
& \Delta E_{\mathrm{p}}=m \Delta V\left(=750 \times 5.31 \times 10^{7}\right)=3.98 \times 10^{10} \mathrm{~J} \tag{1}
\end{align*}
$$

(allow C.E. for value of ΔV)
[alternatives:
calculation of $\frac{G M}{R}\left(6.25 \times 10^{7}\right)$ or $\frac{G M}{r}\left(9.46 \times 10^{6}\right) \quad$ (1)
or calculation of $\frac{G M m}{R}\left(4.69 \times 10^{10}\right)$ or $\frac{G M m}{r}\left(7.10 \times 10^{9}\right) \quad$ (1)
calculation of both potential energy values (1)
subtraction of values or use of $m \Delta V$ with correct answer (1)
6

